微积分——自动微分

  梯度下降法(Gradient Descendent)是机器学习的核心算法之一,自动微分则是梯度下降法的核心;   梯度下降法用于求损失函数的最优值,前面的文章中我们说过梯度下降是通过计算参数与损失函数的梯度并在梯度的方向不断迭代求得极值;但是在机器学习、深度学习中很多求导往往是很复杂的,手动使用

BP神经网络

神经网络理论   BP神经网络(Back Propagation Neural Network)为多层前馈神经网络用得比较广泛,该神经网络先通过前向传播取得估计值,后再使用误差进行反向传播通过梯度下降来不断地更新权重从而取得最小误差从中学习得最佳权重系数;从BP神经网络的名字也知道该算法的核心为反向
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×