大模型微调—海南小百科(一)

      语言大模型是通过大规模数据集训练而来可以帮我们进行文本生成、内容总结,但对于一些小众知识、内部数据模型不一定知道怎么回答,这时候可能会胡言乱语。目前要想在特定领域小众知识或私密数据时模型能够表现出比较好的水平目前主要有两种方式可以实现:模型微调、外挂知识库也就是RAG模式,RAG模式之前

海南话语音识别模型——数据预处理

      现在很多语音助手比如小爱同学、小度等都有支持方言语音识别,开源模型也有不少中文的ASR(自动语音识别)预训练模型可做到开箱即用。方言的ASR模型比较少特别是海南话ASR模型更是没有。这几篇文章主要是基于Transformer从0开始训练一个海南话语音识别模型,当然效果可能不会特别好,这也

RAG知识库之构建知识库图谱

      前面几篇文章谈了多种针对RAG的优化如多表示索引(Multi-representation indexing)、Raptor等但其都是存储在向量库中的,这里将介绍一种新的存储模式,图数据库,适合存储数据高度相关的数据。其存储实体与实体间的关系,存储着丰富的关系类型数据,能给RAG知识库带

RAG应用之针对长文档的Raptor索引

      在现有的朴素RAG应用中其只是简单的对文档进行分块后存储的向量库中,然后在使用是根据 提问问题 从查询向量库中查询相识度较高的文档快作为问题上下文提交到LLM让其根据上下文去回答用户所提问的问题。对于小文本可以直接将整个文档作为上下文或使用上篇文章所提到的**多表示索引(Multi-re

自动求导实现与可视化

    micrograd为一个自动梯度引擎,其实现了反向传播算法,用于学习理解深度学习中的自动求导原理。自动求导无论再传统的机器学习中还是深度学习或是目前非常热门的大语言模型GPT中其都是非常重要基础部分。     反向传播算法可以高效计算出神经网络中损失函数关于训练权重的梯度,使得可通过快速迭代

Ray一个通用分布式计算框架基本使用

  Ray一个开源的通用分布式计算框架,支持传统的并行任务并支持AI模型的分布式训练,分布式任务包括有状态与无状态任务;Ray提供了统一的接口提供了基于任务的并行计算与基于行动器的计算,前者通常用于无状态的任务后者用于有状态的任务;Ray为一个具有高可扩展性、容错性的分布式计算集群框架;集群即可逻辑

在树莓派中跑迷你Llama2中文模型

  OpenAI的Karpathy利用周末搞了一个迷你Llama2项目llama2.c用500行C语言实现无任何依赖项的推理程序,此项目在github发布以来衍生出了基于各种语言的迷你Llama推理实现llama2.go、llama2.java、llama2.py等等;   但该项目原本的模型并不支

对ChatGPT的几个提问,当码农小帮手可行

  ChatGPT能说会到,还能写代码修Bug,今天就验证它的IT相关知识能力,容器的使用、代码理解编写的能力等,目前看ChatGPT的水平还是很高,虽然之前通过搜索引擎也能够获取得到,但是搜索精准程度还是差得很多并不是第一时间就能够找到自己想要的答案;   ChatGPT在代码理解、编写代码方面视

使用LabelImg标注图片

  要训练自己的模型、需要标注图片,好在现在标注工具比较简单几乎傻瓜化了。这里使用LabelImg对图片进行标注; LabelImg安装 conda create -n labelImg python=3 conda activate labelImg conda install pyqt=5 co

python中几种自动微分库

  简单介绍下python的几个自动求导工具,tangent、autograd、sympy;   在各种机器学习、深度学习框架中都包含了自动微分,微分主要有这么四种:手动微分法、数值微分法、符号微分法、自动微分法,这里分别简单走马观花(hello world式)的介绍下下面几种微分框架; sympy
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×